• СРО
Магнитный контроль

Магнитный контроль

Магнитный контроль (МК) решает задачи, связанные с обнаружением дефектов внутри и на поверхности конструкций из ферромагнетиков (железо, кобальт, никель). Выявление флокенов, неметаллических включений, волосовин и прочих повреждений методами МК осуществимо, только когда они поверхностные или залегающие на глубине, не превышающей 2-3 мм.

В основе метода – регистрация и анализ магнитных полей рассеяния, образующихся вокруг ферромагнитных объектов после их намагничивания. О наличии дефектов свидетельствует перераспределение магнитных потоков, и формирование магнитных полей рассеяния над определенным местом.

Разновидности методов МК

Чтобы выявлять и фиксировать потоки рассеяния, указывающие на присутствие деформаций и повреждений, применяют несколько методов МК, различающихся в соответствии с ГОСТ 24450-80 по способам получения исходных данных:

  1. Магнитопорошковый – наиболее распространенный и востребованный метод. Отличающийся простотой применения, высокой сенсетивностью и универсальностью, он используется для обнаружения поверхностных и расположенных на глубине до 2 мм деформаций с помощью магнитного порошка в качестве индикатора
  2. Индукционный – основан на применении индукционных преобразователей (катушек), улавливающих локальные потоки возмущения поля, образующиеся над повреждениями намагниченного объекта контроля
  3. Магниторезисторный – использует магниторезистивные преобразователи для выявления и регистрации потоков рассеивания над деформациями намагниченного объекта контроля
  4. Магнитографический – использование записи магнитного поля исследуемого объекта на соответствующем носителе. Воспроизведение полученной сигналограммы анализируется для выявления дефектов
  5. Пондеромоторный – построен на пондеромоторном взаимодействии фиксируемого магнитного поля исследуемого объекта и магнитного поля постоянного магнита, электромагнита или рамки с током
  6. Феррозондовый – использование феррозондовых преобразователей для обнаружения и регистрации рассеяния магнитных полей сварочных швов и прочих исследуемых объектов
  7. Метод эффекта Холла – применение одноименных преобразователей для фиксации локальных возмущений полей над объектами контроля
Основой всех методов МК является обнаружение локальных возмущений поля, образуемых повреждениями намагниченного ферромагнетика. Магнитный поток перемещается по исследуемому объекту, создавая над обнаруженными дефектами поля рассеяния. Их форма и амплитуда отражают размер, параметры и глубину залегания разрушений

Выявляемые дефекты

Методы МК впервые были использованы в 19 веке. С их помощью оценивали прочность, а также структурное состояние ружейных затворов и оболочек разрывных снарядов. С тех пор успели сформироваться три основные сферы МК:

  • Контроль сплошностей в ферромагнетиках
  • Оценка прочности и структурного состояния ферромагнитных сталей и сплавов
  • Определение фаз в конкретном сплаве

Контроль качества магнитными методами дает возможность выявлять повреждения, обладающие характеристиками:

  • Брак с шириной раскрытия на поверхности обследуемого участка от 0,002 мм при глубине от 0,01 мм
  • Крупные внутренние дефекты, залегающие на глубине от 2 мм
  • Поверхностные повреждения глубиной до 2 мм
  • Брак под немагнитным покрытием толщиною до 0,25 мм

Сегодня магнитный контроль востребован практически во всех промышленных отраслях:

  • Нефтехимия
  • Металлургия
  • Машиностроение
  • Энергетика (ТЕЦ, АЭС)
  • НГК (трубопроводы, промышленные емкости)
  • Авиа-, судо- и автомобилестроение
Грамотное применение методов МК позволяет на ранней стадии выявлять и устранять поверхностные и углубленные повреждения ферромагнетиков

Особенности технологии МК

Метод МК не требует специальной предварительной подготовки, поскольку является бесконтактным. Его суть заключается в анализе поля рассеяния, образующегося в местах скопления дефектов при намагничивании исследуемых объектов.

Проведение МК регулируется национальными и международными стандартами, включая, ГОСТ 21105-87, РД-13-05-2006 и EN 1290:1998.

  1. Магнитная проницаемость несплошности гораздо ниже, чем у остальной части исследуемого объекта. Ее наличие искривляет магнитные силовые линии. Некоторые из них выходят на поверхность пораженного участка, чтобы обойти повреждение и образуют локальный магнитный поток рассеяния
  2. Возникновение полей возмущения фиксируется магнитными преобразователями, среди которых наиболее распространены датчик Холла и его индукционные, феррозондовые, и магниторезистивные вариации
  3. Мероприятия контроля завершаются размагничиванием каждой используемой детали в поле солеонида, питаемого переменным током

Бесконтактный магнитный контроль чаще всего применяют в диагностике:

  • Магистральных трубопроводов:
  • Отдельных труб с любым диаметром
  • Прокатных листов
  • Арматуры
  • Вертикальных стальных резервуаров

Приборы и оборудование

Для намагничивания контролируемых объектов используют стационарные и портативные магнитные дефектоскопы. Первые позволяют с высокой точностью выявлять поверхностные и более глубокие повреждения любой направленности, вторые – контролировать объекты в полевых условиях.

Недостаток диагностических магнитных дефектоскопов заключается в узкой направленности и требовательности к температурному режиму. Для получения более корректных результатов эксперты рекомендуют использовать многоканальную модель с функцией ультразвукового анализа.

  1. Работа прибора начинается его калибровкой с проверкой по эталонам и очищением поверхности контролируемой детали
  2. Намагничивание детали в соответствии с типом намагничивания и параметрами чувствительности
  3. Нанесение индикаторного вещества
  4. Визуальный осмотр детали с возможностью фиксации индикаторного рисунка для дальнейшего анализа с помощью многофункционального дефектоскопа

На основании сравнения полученных рисунков с нормативными образцами делают заключение о возможности целевого применения исследуемого объекта.

Отправьте заявку на исследование магнитным методом контроля

Услуга, которая вас интересует
ФИО или организация
E-mail
Номер телефона*
Ваш комментарий
* отмеченые поля обязательны для заполнения

Благодарственные письма наших клиентов

Среди наших клиентов

Москва
Санкт-Петербург
Новосибирск
Казань
Ростов-на-Дону
Самара
Екатеринбург
Ставрополь
Тюмень
Владивосток
Нижний Новгород
Томск
Калининград
Симферополь